Generators for the Tautological Algebra of the Moduli Space of Curves
نویسنده
چکیده
In this paper, we prove that the tautological algebra in cohomology of the moduli space Mg of smooth projective curves of genus g is generated by the first [g/3] Mumford-Morita-Miller classes. This solves a part of Faber’s conjecture [5] concerning the structure of the tautological algebra affirmatively. More precisely, for any k we express the k-th Mumford-Morita-Miller class ek as an explicit polynomial in the lower classes for all genera g = 3k−1, 3k−2, · · · , 2.
منابع مشابه
Picard Group of Moduli of Hyperelliptic Curves
The main subject of this work is the difference between the coarse moduli space and the stack of hyperelliptic curves. We compute their Picard groups, giving explicit description of the generators. We get an application to the non-existence of a tautological family over the coarse moduli space.
متن کاملTautological Relations on the Stable Map Spaces
The cohomology of the spaces of rational stable maps to flag varieties is generated by tautological classes. We study relations between the tautological generators. We conjecture that all relations between these generators are tautological, i.e. they are essentially obtained from Keel’s relations onM0,n with the aid of the pushforwards by the natural morphisms. We check this claim on the open p...
متن کاملWeierstrass Cycles and Tautological Rings in Various Moduli Spaces of Algebraic Curves
We analyze Weierstrass cycles and tautological rings in moduli spaces of smooth algebraic curves and in moduli spaces of integral algebraic curves with embedded disks with special attention to moduli spaces of curves having genus ≤ 6. In particular, we show that our general formula gives a good estimate for the dimension of Weierstrass cycles for low genera.
متن کاملThe Moduli Space of Curves and Its Tautological Ring
The moduli space of curves has proven itself a central object in geometry. The past decade has seen substantial progress in understanding the moduli space of curves, involving ideas, for example, from geometry (algebraic, symplectic, and differential), physics, topology, and combinatorics. Many of the new ideas are related to the tautological ring of the moduli space, a subring of the cohomolog...
متن کاملThe Tropicalization of the Moduli Space of Curves
We show that the skeleton of the Deligne-MumfordKnudsen moduli stack of stable curves is naturally identified with the moduli space of extended tropical curves, and that this is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct tautological forgetful, cl...
متن کامل